欢迎访问 澳门新甫京娱乐娱城平台(大数据学院)
当前位置: 首页 » 师资队伍 » 副教授 » 梁建青
  • 梁建青

    最终学位:博士

    导师类型:博士生导师

  • 电子邮箱:liangjq@sxu.edu.cn

    联系电话:0351-7010566

  • 研究方向:机器学习、模式识别

  • 个人简介
  • 学术论文
  • 科研项目

梁建青,博士,副教授,博士生导师。主要研究方向为机器学习、模式识别、大数据分析技术、人工智能。近年来,在AI、TPAMI、TIP、TCYB、TMM、PR、《软件学报》、ICML、WSDM等国际国内重要学术刊物上发表学术论文二十余篇。获山西省自然科学一等奖,澳门新甫京娱乐娱城平台文瀛青年学者,天津大学2019年优秀博士学位论文奖,WSDM2022杰出审稿人奖以及CCML2017最佳学生论文奖。主持国家自然科学基金青年项目1项、面上项目1项,参与科技部重大项目1项、国家自然科学基金重点联合基金项目1项。申请发明专利9项,获得软件著作权登记8项。

[1] J Liang, M Chen, J Liang. Graph external attention enhanced transformer. In Proceedings of the 41st International Conference on Machine Learning, 2024

[2] Z Du, J Liang, J Liang, K Yao, F Cao. Graph regulation network for point cloud segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, DOI: 10.1109/TPAMI.2024.3400402

[3] Q Yue, J Cui, L Bai, J Liang, J Liang. A zero-shot learning boosting framework via concept-constrained clustering. Pattern Recognition, 2023, 109937

[4] J Liang, Z Du, J Liang, K Yao, F Cao. Long and short-range dependency graph structure learning framework on point cloud. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, DOI: 10.1109/TPAMI.2023.3298711

[5] J Cui, J Liang, Q Yue, J Liang. A general representation learning framework with generalization performance guarantees. In Proceedings of the 40th International Conference on Machine Learning, 2023

[6] S Tang, K Yao, J Liang, Z Wang, J Liang. Graph neural networks with interlayer feature representation for image super-resolution. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023: 652-660

[7] X Guo, W Wei, J Liang, C Dang, J Liang. Metric learning via perturbing hard-to-classify instances. Pattern Recognition, 2022, 132: 108928

[8] K Yao, J Liang, J Liang, M Li, F Cao. Multi-view graph convolutional networks with attention mechanism. Artificial Intelligence, 2022, 307: 103708

[9] J Wang, J Liang, J Liang, K Yao. GUIDE: Training deep graph neural networks via guided dropout over edges. IEEE Transactions on Neural Networks and Learning Systems, 2022, DOI: 10.1109/TNNLS.2022.3172879

[10] T Guo, J Liang, J Liang, GS Xie. Cross-modal propagation network for generalized zero-shot learning. Pattern Recognition Letters, 2022, 159: 125-131

[11] J Liang, P Zhu, C Dang, Q Hu. Semisupervised laplace-regularized multimodality metric learning. IEEE Transactions on Cybernetics, 2022, 52(5): 2955-2967

[12] J Wang, J Liang, K Yao, J Liang, D Wang. Graph convolutional autoencoders with co-learning of graph structure and node attributes. Pattern Recognition, 2022, 121: 108215

[13] J Liang, Q Hu, C Dang, W Zuo. Weighted graph embedding-based metric learning for kinship verification. IEEE Transactions on Image Processing, 2019, 28(3): 1149-1162

[14] J Liang, Q Hu, P Zhu, W Wang. Efficient multi-modal geometric mean metric learning. Pattern Recognition, 2018, 75: 188-198

[15] J Liang, Q Hu, W Wang, Y Han. Semisupervised online multikernel similarity learning for image retrieval. IEEE Transactions on Multimedia, 2017, 19(5): 1077-1089

[16] 齐忍, 朱鹏飞, 梁建青. 混杂数据的多核几何平均度量学习. 软件学报, 2017, 28(11): 2992-3001

[17] J Liang, Y Han, Q Hu. Semi-supervised image clustering with multi-modal information. Multimedia Systems, 2016, 22(2): 149-160

[18] C Dang, J Liang, Y Yang. A deterministic annealing algorithm for approximating a solution of the linearly constrained nonconvex quadratic minimization problem. Neural Networks, 2013, 39: 1-11

1. 面向高维数据的多视图距离度量学习, 国家自然科学基金青年项目, 2021.01-2023.12, 主持

2. 监督信息受限的多视图图表示学习方法研究, 国家自然科学基金面上项目, 2024.01-2027.12, 主持

3. 认知计算基础理论与方法研究, 科技创新2030-“新一代人工智能”科技部重大项目, 2021.1-2024.10, 参与

4. 复杂多视图数据统一表示及分类研究, 国家自然科学基金面上项目, 2020.1-2023.12, 参与

5. 半配对的图像和文本异构迁移学习方法研究, 国家自然科学基金青年项目, 2018.1-2020.12, 参与

6. 面向复杂多视角数据的层次聚类研究, 国家自然科学基金青年项目, 2017.1-2019.12, 参与

7. 大规模异构数据匹配的距离度量学习, 国家自然科学基金青年项目, 2016.1-2018.12, 参与

8. 粗糙回归模型与算法研究, 国家自然科学基金青年项目, 2016.1-2018.12, 参与